USIM Gate: Upsampling Module for Segmenting Precise Boundaries Concerning Entropy


Deep learning (DL) techniques for precise semantic segmentation have remained a challenge because of the vague boundaries of target objects caused by the low resolution of images. Despite the improved segmentation performance using up/downsampling operations in early DL models, conventional operators cannot fully preserve spatial information and thus generate vague boundaries of target objects. Therefore, for the precise segmentation of target objects in many domains, this paper presents two novel operators- (1) upsampling interpolation method (USIM), an operator that upsamples input feature maps and combines feature maps into one while preserving the spatial information of both inputs, and (2) USIM gate (UG), an advanced USIM operator with boundary-attention mechanisms. We designed our experiments using aerial images where the boundaries critically influence the results. Furthermore, we verified the feasibility that our approach effectively segments target objects using the cityscapes dataset. The experimental results demonstrate that using the USIM and UG with state-of-the-art DL models can improve the segmentation performance with clear boundaries of target objects (Intersection over Union- +6.9; BJ- +10.1). Furthermore, mathematical proofs verify that the USIM and UG contribute to the handling of spatial information.

Artificial Intelligence and Statistics

연합학습 및 표현 학습을 사용한 medical 도메인에서의 딥 러닝 기법, 도메인 적응 및 테스트 타임 학습과 같은 딥 러닝 기반 컴퓨터 비전 응용, 이미지 처리 및 이미지-텍스트 캡셔닝을 포함한 의료 응용의 딥 러닝 기반 진단 등을 포함합니다.