Local Similarity Siamese Network for Urban Land Change Detection on Remote Sensing Images

초록

Change detection is an important task in the field of remote sensing. Various change detection methods based on convolutional neural networks (CNNs) have recently been proposed for remote sensing using satellite or aerial images. However, existing methods allow only the partial use of content information in images during change detection because they adopt simple feature similarity measurements or pixel-level loss functions to construct their network architectures. Therefore, when these methods are applied to complex urban areas, their performance in terms of change detection tends to be limited. In this article, a novel CNN-based change detection approach, referred to as a local similarity Siamese network (LSS-Net), with a cosine similarity measurement, was proposed for better urban land change detection in remote sensing images. To use content information on two sequential images, a new change attention map-based content loss function was developed in this study. In addition, to enhance the performance of the LSS-Net in terms of change detection, a suitable feature similarity measurement method, incorporated into a local similarity attention module, was determined through systemic experiments. To verify the change detection performance of the LSS-Net, it was compared with other state-of-the-art methods. The experimental results show that the proposed method outperforms the state-of-the-art methods in terms of the F1 score (0.9630, 0.9377, and 0.7751) and kappa (0.9581, 0.9351, and 0.7646) on the three test datasets, thus suggesting its potential for various remote sensing applications.

출판유형
발행기관
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
이경수
이경수
조교수

연합학습 및 표현 학습을 사용한 medical 도메인에서의 딥 러닝 기법, 도메인 적응 및 테스트 타임 학습과 같은 딥 러닝 기반 컴퓨터 비전 응용, 이미지 처리 및 이미지-텍스트 캡셔닝을 포함한 의료 응용의 딥 러닝 기반 진단 등을 포함합니다.